APPENDIX A-1

FACILITY INSPECTION FORM FOR COMPLIANCE WITH INTERIM STATUS STANDARDS COVERING GROUND-WATER MONITORING

Comp	pany Name: Amoco - Riverfront;	IEPA I.D. Number: LPC1191150001
	any Address: Amoco RiverStrant Road;	USEPA I.D. Number: ILD98050310b
	brod River, Illinois	Inspector's Name: m. Dilday
	62095	
Comp	any Contact/Official: R. Summer;	Branch/Organization: FOS/IEPA
Titl	e: Forironmental Engineer:	Date of Inspection: 2/26/85
		Yes No Unknown Wavied
Туре	of facility: (check appropriately)	
	a) surface impoundmentb) landfillc) land treatment facilityd) disposal waste pile*	<u>×</u>
Grou	nd-Water Monitoring Program	
	Was the ground-water monitoring program reviewed prior to site visit? If "No,"	X
	a) Was the ground-water program reviewed at the facility prior to site inspection?	X
	Has a ground-water monitoring program (capable of determining the facility's impact on the quality of groundwater in the uppermost aquifer underlying the facility) been implemented? 725.190(a)	see memoradim

*Listed separate from landfill for convenience of identification.

Completed checklist consists of Appendices A-1 and B.

EPA Region 5 Records Ctr.
291052

		Yes	No	Unknown	Wavied
3.	Has at least one monitoring well been installed in the uppermost aquifer hydraulically upgradient from the limit of the waste management area? 725.191(a)(1)	See	Den	crandum	-
-	a) Are ground-water samples from the uppermost aquifer, representative of background ground-water quality and not affected by the facility (as ensured by proper well number, locations and depths?)	See	me,	morandi	um.
4.	Have at least three monitoring wells been installed hydraulically downgradient at the limit of the waste handling or management area? 725.191(a)(2)	_see	መድ ድንሳ	orandum	
	a) Do well numbers, locations and depths ensure prompt detection of any statistically significant amounts of hazardous waste or hazardous waste constituents that migrate from the waste management area to the uppermost aquifer?	<u>3ee</u> v	neno	nandm	
5.	Have the locations of the waste management areas been verified to conform with information in the ground-water program?	<u>X</u> _	~~~		
	a) If the facility contains multiple waste management components, is each component adequately monitored?	insul	Ricen ⁴	data	
6.	Do the numbers, locations, and depths of the ground-water monitoring wells agree with the data in the ground-water monitoring system program? If "No," explain discrepancies.				
7.	Well completion details. 725.191(c)				
	 a) Are wells properly cased? b) Are wells screened (perforated) and packed where necessary to enable sampling at appropriate depths? 	_ <u>÷x</u> c	M& N	er <u>ard</u> um	
	c) Are annular spaces properly sealed to prevent contamination of ground-	<u> </u>		A separate service ser	

								Yes	No	Unknown	Wavied
8.				ater samp loped? 7				_×_			
	a) b) c)	Is Doe	the pl s the	en follow an kept a plan incl iques for	t the fac ude proce			<u>x</u>			
		1) 2) 3) 4) 5)	Samp Samp Samp Anal	le collec le preser le shipme ytical pr n of cust	tion? vation? nt? ocedures?			X Egan X X X	we to 4	CFR, Port	562' Yebri
9.	wate for	er sai	mples i first	ed parame being tes year? 729	ted quart	erly		Sec	m <u>en</u> o	mubum	
	a)			round-wate for the fo		s					
		1)	suita as a	meters chability of drinking	f the gro	und-water					
		2)		192(b)(1) meters es	tablishin	g ground-		X			
		3)	wate Para	r quality	? 725.19 ed as ind	2(b)(2) icators of					
				192(b)(3)				<u>X</u>			
			(i) (ii)	are at measurem upgradic sample of first years. 1920 Are provided the resultance of the resultance of the resultance well(s)	least four ments obta ent well obtained o ear of mor (c)(2) visions ma the initia tic mean a respective rations or d from the during the	during the nitoring? Ide to cal- Ide background variance parameter Values Upgradien	e ich nd ee	Х			
				year? 7	725.19Ž(c)	(2)		<u>X</u> _			

•	-	$lue{oldsymbol{\omega}}$	
•			Yes No Unknown Wavied
	b)	For facilities which have completed first year ground-water sampling and analysis requirements:	system modified; first your of background not complete on new system
		1) Have samples been obtained and analyzed for the ground-water quality parameters at least	
		annually? 725.192(d)(1) 2) Have samples been obtained and analyzed for the indicators of ground-water contamination at	_N/A_
		least semi-annually? 725.192(d)(2)	_A\ \A_
	c)	Were ground-water surface elevations determined at each monitoring well each time a sample was taken? 725.192(e)	~
	d)	If it was determined that modification of the number, location or depth of monitoring wells was necessary, was	
		the system brought into compliance with 725.191(a)? 725.193	not determined
10.	asse	an outline of a ground-water quality ssment program been prepared?	•
	725.	193(a)	
	a)	Does it describe a program capable of determining:	
		1) Whether hazardous waste or hazardous waste constituents have entered the	
		ground-water? 2) The rate and extent of migration of hazardous waste or hazardous waste	-X
		constituents in ground-water? 3) Concentrations of hazardous waste or hazardous waste constituents	
	٤.	in ground-water?	-X
	ь)	Were records kept of the analyses and evaluations, specified in the ground-water quality assessment (throughout the active life of the facility)? 725.194(b)(1)	_N/A_
		If a disposal facility, were(are) records kept through the post-closure period as well?	_N/A

		Yes	No	<u>Unknown</u>	Wavied
11.	Have records been kept of analyses for parameters in 725.192(c) and (d)? 725.194(a)(1)				
12.	Have records been kept of ground-water surface elevations taken at the time of sampling for each well? 725.194(a)(1)				
13.	Have records been kept of required elevations in 725.192(e)? 725.194(a)(1)	<u>X</u>	-7-7		

*EPA will be proposing (Spring 1982) to replace this reporting requirement with an exception reporting system where reports will be submitted only where maximum contaminant levels or significant changes in the contamination indicators or other parameters are observed. EPA has delayed compliance stage for 14 a) above until August 1, 1982 (Federal Register, February 23, 1982, p. 7841-7842) to be coupled with exception reporting in the interim.

APPENDIX A-2 N/A as of 2/26/85 inspection

COMPLIANCE FORM FOR A FACILITY WHICH MAY BE AFFECTING GROUND-WATER QUALITY

Соп	npany	Name:;	IEPA I.D. Number:						
Con	npany	Address:;	USEPA I.D. Number:						
			Inspector's Name:						
		Contact/Official:;							
				'es	No	Unknown			
Тур	e of	facility: (check appropriately)							
	a) b) c) d)	F	· -						
1.	cont upgr cant	e comparisons of ground-water tamination indicator parameters for radient well(s) 725.193(b) shown a s t increase (or pH decrease as well) tial background?	ignifi-	<u>-</u> .					
	a)	If "Yes," has this information bee submitted to the Director accordin to 725.194(a)(2)(ii)?							
2.	the sign	comparisons of indicator parameters downgradient wells 725.193(b) shown ificant increase (or pH decrease as initial background?	a						
	a)	If "Yes," were additional ground-was samples taken for those downgradien wells where the significant different was determined? 725.193(c)(2)	nt						
		 Were samples split in two? Was the significant difference 	e due			-			
		to human (e.g., laboratory) er (If "Yes," do not continue.)	rror?						

APPENDIX -B

GROUND-WATER MONITORING AND ALTERNATE SYSTEM TECHNICAL INFORMATION FORM

APPENDIX B

GROUND-WATER MONITORING AND ALTERNATE SYSTEM TECHNICAL INFORMATION FORM

1.0	Backg	round Data:	
Con	pany N	ame: Amaco-Riverfront ; EPA I.D.#: I	LD980503106
Con	pany A	ddress: Amaa Riverfront Road	
		Upod River, Illinois	
		62095	
Insp	ector's i	Name: m. Dilday; Date: 2/21	0/85
		l	
1.1	Туре	of facility (check appropriately):	
	1.1.1	surface impoundment	
		landfill	
	1.1.3	·	
	1.1.4	disposal waste pile	•
1.2	Has a	ground-water monitoring system been	
	establ	ished?	(Y/N) <u>Y</u>
	1.2.1	Is a ground-water quality assessment	
		program outlined or proposed?	(ү/и)
		If Yes,	
	100	Titles to seek and a term of the total term.	(14 (25) B.
	1.2.2	Was it reviewed prior to the site visit?	(A/N) <u>N</u>
1.3		ground-water quality assessment program been	
	implen	nented or proposed at the site?	(A/N) \overline{N}
		Appendix C, Ground-Water Quality Assessment m Technical Information Form must be utilized also.	
2.0	Region	nal/Facility Map(s)	
2.1	is a rec	gional map of the area, with the facility	
		ated, included?	(Y/N) <u>Y</u>
	If yes,		
	2.1.1	What is the origin and scale of the map? U.S.G.S	. Toncambic
		Map 1:24,000	
	2.1.2	Is the surficial geology adequately illustrated?	

•			
	2.1.3	Are there any significant topographic or surficial features evident?	(Y/N) <u>Y</u>
		If yes, describe Mississippi River is 50-	100 ft from
		the waste management boundary	
	2.1.4	Are there any streams, rivers, lakes, or wet lands near the facility?	(Y/N) <u> </u>
		If yes, indicate approximate distances from the facility see 2.1.3 above	
	2.1.5	Are there any discharging or recharging wells	
		near the facility?	(Y/N) <u>Y</u>
		If yes, indicate approximate distances from the facility. Amon's production well gene	rates a
		come of depression, the center of whi	ch is approximately
·-		2400 feet from the enotern border of th	e facility
2.2		gional hydrogeologic map of the area included? nformation may be shown on 2.1)	(Y/N) <u>Y</u>
	If yes:		-
	2.2.1	Are major areas of recharge/dishcarge shown?	(Y/N) <u>N</u>
		If yes, describe.	
	2.2.2	Is the regional ground-water flow direction	
		indicated?	(Y/N) <u>N</u>
	2.2.3	Are the potentiometric contours logical? If not, explain.	
2.3	is a fac	eility plot plan included?	(Y/N) <u>Y</u>
	2.3.1	Are facility components (landfill areas, impoundments, etc.) shown?	(Y/N) <u>Y</u>
	2.3.2	Are any seeps, springs, streams, ponds, or wetlands indicated?	(Y/N) <u>N</u>

;

		2.3.3	Are the locations of any monitoring wells, soil borings, or test pits shown?	(Y/N) <u>Y</u>
		2.3.4	Is the facility a multi-component facility?	(Y/N) <u>Y</u>
			If yes:	
			2.3.4.1 Are individual components adequately monitored?	(Y/N) insulficent data
			2.3.4.2 Is a Waste Management Area delineated?	(Y/N) <u>Y</u>
:	2.4	ls a site	e water table (potentiometric) contour map d?	(Y/N) <u>N</u>
		If yes,		
		2.4.1	Do the potentiometric contours appear logical based on topography and presented data? (Consult water level data)	(Y/N)
		2.4.2	Are groundwater flowlines indicated?	(Y/N)
		2.4.3	Are static water levels shown?	(Y/N)
		2.2.4	May hydraulic gradients be estimated?	(Y/N)
-		2.4.5	Is at least one monitoring well located hydraulically upgradient of the waste management area(s)?	(Y/N)
		2.4.6	Are at least three monitoring wells located hydraulically downgradient of the waste management area(s)?	(Y/N)
		2.4.7	By their location, do the upgradient wells appear capable of providing representative ambient groundwater quality data?	(Y/N)
			If no, explain.	
				•

3.0	Soil B	oring/Test Pit Details				
3.1	.1 Were soil borings/test pits made under the supervision of a qualified professional? (Y/N					
	If yes,	•				
	3.1.1	Indicate the individual(s) and affiliation(
		Amoro Hydrogeologist				
	3.1.2	Indicate the drilling/excavating contract	tor, if known John Mathe			
3.2		borings/test pits were made, indicate the ling/excavating:	method(s)			
	•	Auger (hollow or solid stem)	<u>×</u> _			
	•	Mud rotary				
	•	Air rotary				
	•	Reverse rotary Cable tool	4 			
		Jetting				
	•	Other, including excavation (explain)				
3.3	List th	ne number of soil borings/test pits made at	the site			
	3.3.1	Pre-existing	39			
	3.3.2	For RCRA compliance	indeterminate			
3.4		te borehole diameters and depths (if different ters and depths use TABLE B-1).	ent			
	3.4.1	Diameter: 6"				
	3.4.2	Depth: refer to boring logs				
3.5	Were li	ithologic samples collected during drilling?	(Y/N) <u>Y</u>			
	If yes,	·				
	3.5.1	How were samples obtained? (Check me	thod(s))			
		Split spoon	~			
		Shelby tube, or similar				
		Rock coring				
		Ditch sampling				
		• Other (explain)				

í

•

	3.5.2	At what interval were samples collected? 1500	intervals
		between each 11/2 foot split spens some	alings
	3.5.3	Were the deposits or rock units penetrated described? (boring logs, etc.)	(Y/N) <u>Y</u>
3.6		pits were excavated at the site, describe	
4.0	Well (Completion Detail	
4.1		the wells installed under the supervision of a qualified sional?	(Y/N) <u>Y</u>
	If yes:		
	4.1.1	Indicate the individual and affiliation, if known	ene Schmidt
		Amoro Hydrogeologist	
	_		
	4.1.2	Indicate the well construction contractor, if known_	John Mathes
4.2	List th	e number of wells at the site	
	4.2.1	Pre-existing <u>39</u>	
	4.2.2	For RCRA Compliance 13	
4.3	Well co	onstruction information (fill out INFORMATION E B-2)	
	4.3.1	If PVC well screen or casing is used, are joints (couplings):	
		• Glued on	•
	4.3.2	Are well screens sand/gravel packed?	(Y/N) Y

•

•

,

• . . .

	4.3.3	Are annular spaces sealed?	(Y/N) <u>Y</u>
		If yes, describe:	
		 bentonite slurry Cement grout Other (explain) 	
		• Thicknesses of seals 2 feet	
	4.3.4	If "open hole" wells, are the cased portions sealed in place?(Y/N) N/A	
		If yes, describe how:	
	4.3.5	Are there cement surface seals?	(Y/N) <u>Y</u>
		If yes,	
		• How thick? 2 feet	, , , , , , , , , , , , , , , , , , ,
	4.3.6	Are the wells capped?	(Y/N) <u>Y</u>
		If yes,	
-		• Do they lock?	(Y/N) <u>N</u>
	4.3.7	Are protective standpipes cemented in place?	(Y/N) <u>N</u>
	4.3.8	Were wells developed?	(Y/N) <u>Y</u>
		If yes, check appropriate method(s):	
-		Air lift pumping Pumping and surging Jetting (air) Bailing Other (explain)	·
5.0	Aquife	r Characterization	
5.1		e extent of the uppermost saturated zone r) in the facility area been defined?	(Y/N) <u>N</u>
	If yes,	·	
	5.1.1	Are soil boring/test pit logs included?	(Y/N)
	5.1.2	Are geologic cross-sections included?	(Y/N)

WELL NO.	RL-I	RL-Z	RL-19	RL-29	S RL-3	RL-4
GROUND ELEVATION				i		
TOTAL DEPTH		34	14	14	39	39
TYPE MATERIAL	PVC	PVC	PVC	PVC	PVC	PVC
DIAMETER (in., ID)	2	2	2	2	2	2
LENGTH (\$4.7)	41.50	27.17	b.75	6.83	31.58	28.75
STICK-UP (St.)	2.50		2.75	2.83	2.58	2.75
TOP ELEVATION				426.68	428.43	427.54
BOTTOM ELEVATION	382.78	389.65	417.67	419.65	396.85	PT.89E
DEPTH TOP/BOTTOM	39	2A 3A	4 4	29	29	2L 3L
TYPE MATERIAL	PYC	PVC	PYC	PVC	PVC	PVC
DIAMETER (in., TO)	2	2	2	2	2	5
LENGTH (CL.)	10	10		10	10	10
SLOT SIZE (in.)	010.	.010	.020	.020	,010,	.010
TOP ELEVATION	382.78	399.65	417.67	419.85	396.85	PF.8PE
BOTTOM ELEVATION	372.78	389.65	407.67	409.85	386.85	PF.88E
DEPTH TOP/BOTTOM	18	23	3/4	3/14	21/39	22/39
DIAMETER	Çe	و	و	D	Q	(
LENGTH	31	oi	11	11	81	17
TOP ELEVATION	403.78	399.65	418.67	420.85	404.85	402.79
BOTTOM ELEVATION	372.78	389. 6 5	407.67	409.85	386.85	385.79
	TOTAL DEPTH TYPE MATERIAL DIAMETER (in., ID) LENGTH (\$\frac{1}{2}\) STICK-UP (\$\frac{1}{2}\) TOP ELEVATION DEPTH TOP/BOTTOM TYPE MATERIAL DIAMETER (in., ID) LENGTH (\$\frac{1}{2}\) SLOT SIZE (in.) TOP ELEVATION BOTTOM ELEVATION DOTTOM ELEVATION DEPTH TOP/BOTTOM DIAMETER LENGTH LENGTH TOP ELEVATION	TOTAL DEPTH TOTAL DEPTH TYPE MATERIAL PYC DIAMETER (in., ID) LENGTH (H.) STICK-UP (H.) TOP ELEVATION BOTTOM ELEVATION TYPE MATERIAL PYC DIAMETER (in., ID) LENGTH (H.) TYPE MATERIAL PYC LENGTH (H.) SLOT SIZE (in.) TOP ELEVATION BOTTOM ELEVATION BOTTOM ELEVATION TOP ELEVATION DIAMETER LENGTH DIAMETER LENGTH TOP ELEVATION DIAMETER LENGTH TOP ELEVATION DIAMETER LENGTH TOP ELEVATION A9 A9 A9 BOTTOM ELEVATION BOTTOM ELEVATION BOTTOM ELEVATION A03.78	RL-1 RL-2 RL-1 RL-2 RL-1 RL-2 RL-1 RL-2 RL-2 RL-1 RL-2 RL-1 RL-2 RL-2 RL-1 RL-2 RL-2 RL-2 RL-1 RL-2 RL-2	RL-1 RL-2 RL-15	RL-1 RL-2 RL-15 RL-25	RL-1 RL-2 RL-15 RL-25 RL-3

	WELL NO.	RL-43	RL-5	RL-L	RL-7	RL-8	RL-9
	GROUND ELEVATION	424.97	426.31	431.2	427.9	2 428.3	5 427.93
	TOTAL DEPTH (St.)	. 19	34-	44	39	39	·-39
	TYPE MATERIAL	PVC	PVC	PVC	PYC	PVC	Pvc
	DIAMETER (in., TO)	2	2	2	2	2.	2.
CABINO	LENGTH (ft.) TOC -> screen top	10.58	26,92	36.25	31.67	32.10	32.16
WELL		2.58	2.92	2.25	2.67	3.00	2.50
•	TOP ELEVATION	427.55	429.28	433.46	430.59	431.35	430.43
	BOTTOM ELEVATION	416,97	402.36	397.21	398.92	399.25	398.27
	DEPTH TOP/BOTTOM	8 18	24 34	34 44	29 39	29	29 39
	TYPE MATERIAL	PVC	PVC	PVC	PVC	PVC	PVC
SCREEN	DIAMETER (in, TE)	2	2	2	2	2_	2
	LENGTH (St.)	10	10	10	10	10	10
WELL	SLOT SIZE (in.)	.010	.010	010,	.010	010.	. 010
	TOP ELEVATION	416.97	40236	397.21	398.92	399. 25	398.27
	BOTTOM ELEVATION	406.97	392.3b	367.21	388.92	389.25	388.93
Š	DEPTH TOP/BOTTOM	8 19	19 34	20/44	20/39	zio 39	22/39
5 4	DIAMETER (in.)	þ	6	ص	6	Ь	6
OPEN HOLE ND/GRAVEI	LENGTH	11	15	24	19	19	17
~	TOP ELEVATION	416.97	407.36	411.21	407.92	408.25	405.93
	BOTTOM ELEVATION	405.97	392.36	38721	386.9z	389.25	EP.898

	WELL NO.	RL-93	RL-10	RL-US	RL-125	S RL-13	3 RL-149
	GROUND ELEVATION	428.48	425.38	423.93	423.09	421.87	429.19
	TOTAL DEPTH (4)		34	19	14	14	14
	TYPE MATERIAL	PVC	PYC	PVC	PVC	PVC	PYC
	DIAMETER (in., EO)	2	2	2	2	2	2.
CABING	LENGTH (44)	6.08	26.5	11.92	7.17	6.67	6,25
WELL O	STICK-UP (\$1.)	2.08	2.50	2.92	3.17	2.67	2.25
*	TOP ELEVATION	430.5%	427.88	426.85	426.26	429.49	431.44
	BOTTOM ELEVATION	424.48		414.93	419.09	422.82	425.19
	DEPTH TOP/BOTTOM	4 14	24	9 19	4 14	4 14	4 (4
	TYPE MATERIAL	PVC	PVC	PVC	PVC	PVC	PVC
BCREEN	DIAMETER (in., ID)	2	2	2	. 2	2	2.
	LENGTH (#)	10	. 10	10	10	10	10
WELL	SLOT SIZE (in.)	.020	.010	. <i>03</i> 0	,020	.020	.020
	TOP ELEVATION	424.48	401.38	414.93	419.09	422.82	425.19
	BOTTOM ELEVATION	414.48	391.38	404.93	409,09	412.82	415.19
¥	DEPTH TOP/BOTTOM	3 14	18	14	3 14	3/14	3/14
5 4	DIAMETER (in)	6	6	٥	م	ل	6
M HOLE	LENGTH (FL)	11	16	5	11	11	11
OPEN AND/G	TOP ELEVATION	425.48	401.38	409.93	420.09	423.82	426.19
•	BOTTOM ELEVATION	414.48	391.38	404.93	409.09	412.82	415.19

	WELL NO.	RL-75	RL-bs			
	GROUND ELEVATION	428.21	7			·
	TOTAL DEPTH (%)	. 19	22		 	
	TYPE MATERIAL	Pyc	steel.			
	DIAMETER (in., ID)	2	2			
CABING	LENGTH (S4.)	11.42	14			
WELL C	STICK-UP (\$4.7)	2.42	2.00			
3	TOP ELEVATION	430.63	?			
	BOTTOM ELEVATION	419.21	3			
	DEPTH TOP/BOTTOM	9/19	12 22			
	TYPE MATERIAL	PVC	stainless steel			
SCREEN	DIAMETER (in , ID)	2	2			
ł	LENGTH (\$1)	10	10			
WELL	SLOT SIZE (in)	.020	ذ			
	TOP ELEVATION	419.21	٠.			
	BOTTOM ELEVATION	409.21	٠.			
Ç	DEPTH TOP/BOTTOM	8 19	12/22	<u></u>		
OPEN HOLE OR SAND/GRAVEL PACK	DIAMETER (in.)	6	7.			
	LENGTH (Ç+.)	11	10			
OPE!	TOP ELEVATION	420.21	٠.			
Ø	BOTTOM ELEVATION	409.21	٠,			

5.2			ce of confining (low permeability) the site?	(Y/N) <u>Y</u>	
	If yes,				
	5.2.1	Is the a	areal extent and continuity indicated?	(Y/N) <u>Y</u>	
	5.2.2	(perche	e any potential for saturated conditions ed water) to occur above the uppermost? (Y/N) Y		
		If yes,	give details: a shallow water tab	le exists	
		بمطف	ce the zore previously monitor	-d; a	
			on mosi prind brodian par poer		
		a) Sho	uld or is this perched zone being nitored?	(Y/N) <u>Y</u>	
		Explain	the zone is being monitored		
	5.2.3	upperm	the lithology and texture of the ost saturated zone (aquifer)? sand and si		
				· · · · · · · · · · · · · · · · · · ·	
	5.2.4	What is	the saturated thickness, if indicated? not:	ndicated	
5.3	Were s	tatic wa	ter levels measured?	(Ү/И) _ Y	
	· If yes,		·		
	5.3.1	How we	ere the water levels measured (check method	(s)).	
		WetAir	tric water sounder ted tape - line er (explain)		
	5.3.2	Do fluc	tuations in static water levels occur?	(Y/N) <u> </u>	
		If yes,			
		5.3.2.1	Are they accounted for (e.g. seasonal, tidal, etc.)?	(Y/N) <u>Y</u>	
			If yes, describe: seasonal fluctuation	s, change in	
			River stages, and industrial pu	- Z	
			the aquifer	,)	
			n n		

		5.3.2.2	Do the water level fluctuations general ground-water gradients directions?		(Y/N) See 9	etion
			If yes,			
		5.3.2.3	Will the effectiveness of the w detect contaminants be reduce		(Y/N) see 9	lazles cation
			Explain			
		5.3.2.4	Based on water level data, do a differentials occur that may inflow component in the saturate	dicate a vert	ical (Y/N)Y	
			If yes, explain bydowlic head		_	
			the shallow ground water t	•		•
5.4	Have a	Geomodurater top	ole			
	If yes,		•			
	5.4.1	Indicate	method(s):			(
	~	• Fallis	oing tests ng/constant head tests ratory tests (explain)	<u>×</u>		
	5.4.2	 hydr Trans Stora Leaki Perm Poros 	missivity ge coefficient age eability	1.1x10-4-8	B. 4 × 10 -5 em/ca	~ .
	5.4.3	discrepa	where several tests were undertoncies in the results evident?	·	(Y/N) indele	minade
	5.4.4	Were hor determin	izontal ground-water flow veloc ed?	ities	(Y/N) <u>N</u>	
		If yes, in	dicate rate of movement			

6.0	Well I	Performance	
6.1	Are th	ne monitoring wells screened in the uppermost aquifer?	(Y/N) <u>Y</u>
	6.1.1	Is the full saturated thickness screened?	(Y/N) <u>N</u>
	6.1.2	For single completions, are the intake areas in the: (check appropriate levels)	
		 Upper portion of the aquifer Middle of the aquifer Lower portion of the aquifer 	
	6.1.3	For well clusters, are the intake areas open to different portions of the aquifer?	(Y/N) <u>Y</u>
	6.1.4	Do the intake levels of the monitoring wells appear to be justified due to possible contaminant density and groundwater flow velocity?	(Y/N) insufficient
7.0	Groun	d-Water Quality Sampling	
7.1	ls a sa includ	mpling (groundwater quality) program and schedule ed?	(Y/N) <u>Y</u>
7.2	Are sa	mple collection field procedures clearly outlined?	(Y/N) <u>Y</u>
	7.2.1	How are samples obtained: (check method(s))	
		Air lift pump Submersible pump Positive displacement pump Centrifugal pump Peristaltic or other suction-lift pump Bailer (PYC) Other (describe)	
	7.2.2	Are all wells sampled with the same equipment and procedures?	(Y/N) <u>Y</u>
		If no, explain	
	7.2.3	Are adequate provisions included to clean equipment as sampling to prevent cross-contamination between wells?	(Y/N) N Se memorandum
		;	Could it ional comment

_					
٠.			•		
		7.2.4	Are org	anic constituents to be sampled?	(Y/N) <u>Y</u> (
			if yes,		
			7.2.4.1	Are samples collected with equipment to minimize absorption and volatilization?	(Y/N) <u>N</u>
				If yes,	
				Describe equipment	
	8.0	Sample	e Preserva	ation and Handling	
	8.1	proced		e sample preservation and preparation followed (filtration and preservation	(Y/N) <u>Y</u>
	8.2			rigerated?	(Y/N) Y_
,	8.3	Are EI adhere		mended sample holding period requirements	(Y/N) <u>Y</u>
	8.4	Are su	itable con	itainer types used?	(Y/N) <u>Y</u>
	8.5			nade to store and ship samples under (ice packs, etc.)?	(Y/N) <u>Y</u>
	8.6	Is a ch	ain of cus	tody control procedure clearly defined?	(Y/N) <u>Y</u>
	8.7	Is a spe	ecific cha	in of custody form illustrated?	(Y/N) <u>Y</u>
		If yes,			
		8.7.1	sample p	form provide an accurate record of possession from the moment the sample until the time it is analyzed?	(Y/N) <u>Y</u>
	9.0	Sample	Analysis	and Record Keeping	
	9.1	Is samp	ole analysi	is performed by a qualified laboratory?	(Y/N) <u>Y</u>
		Indicat	e lab	Amora Research Center, Environment	tal Analysis, and CEP, I
	9.2	Are and	alytical m	Amoco Research Center, Environment tethods described in the records?	(Y/N) Y by reference
		9.2.1		ytical methods acceptable to EPA?	(Y/N) <u>Y</u>
	9.3	Are the	e required for?	drinking water suitability parametters	(Y/N) <u>Y</u>
	9.4	Are the	required	groundwater quality parameters tested for?	(Y/N) Y

9.5	Are th	(Y/N) Y	
9.6	Are ar	ny analytical parameters determined in the field?	(Y/N) <u>Y</u>
	Identii	fy:	
	• Spe	mperature ecific conductance mer (describe)	
9.7		an included to record information about each sample ted during the groundwater monitoring program?	(Y/N) <u>Y</u>
	9.7.1	Are field activity logs included?	(Y/N) <u>Y</u>
	9.7.2	Are laboratory results included?	(Y/N) <u>Y</u>
	9.7.3	Are field procedures recorded?	(Y/N) <u>Y</u>
	9.7.4	Are field parameter determinations included?	(Y/N) <u>Ÿ</u>
	9.7.5	Are the names and affiliation of the field personnel included?	(Y/N) <u>Y</u>
9.8		atistical analyses planned or shown for all water results where necessary?	(Y/N) <u>Y</u>
	9.8.1	Is an analysis program set-up which adheres to EPA guidelines?	(Y/N) <u>Y</u>
	9.8.2	Is Student's t-test utilized? If other evaluation procedure used, identify	(Y/N) <u>Y</u>
	9.8.3	Are provisions made for submitting analysis reports to the Regional Administrator?	(Y/N) <u> </u>
		erification	
10.1		an indicating the locations of various facility nents, ground-water monitoring wells, and surface?	(Y/N) <u>Y</u>
	10.1.1	Is the plot plan used for the inspection the same as in the monitoring program plan documentation?	(Y/N) <u>Y</u>
		If not, explain	

v E

-

10.1.2	during t	of the components of the facility identified the inspection addressed in the monitoring progration?	am (Y/N) <u>Y</u>
	If not, e	explain	
10.1.3		re any streams, lakes or wetlands on or to the site?	(Y/N) <u>Y</u>
	If yes, i	ndicate distances from waste management area	s
	Miss	sissippi River 50-100 ft	
10.1.4		re any signs of water quality degradation in the surface water bodies?	(Y/N) <u>N</u>
	If yes, e	xplain	
10.1.5		any indication of distressed or dead on on or adjacent to the site?	(Y/N) <u>N</u>
	If yes, e	xplain	
			-
10.1.6	features	re any significant topographic or surficial on or near the site (e.g., recharge arge areas)?	(Y/N) <u>Y</u>
	If yes, e	xplain facility is located within the	100 year
		plain	
10.1.7		monitor well locations and numbers in nt with the monitoring program tation?	(Y/N) <u>Y</u>
	If no, ex	plain	
			
	10.1.7.1	Were locations and elevations of the monitor wells surveyed into some known datum?	(Y/N) <u>Y</u>
		If not, explain_	

	10.1.7.2	Were the wells sounded to determine total depth below the surface?	(Y/N) <u>N</u>
•		If not, explain	
	10.1.7.3	Were discrepancies in total depth greater the two feet apparent in any well?	an (Y/N) <u>inde</u> terminat
		If yes, explain	
10.1.8	Was grouwells?	and water encountered in all monitoring	(Y/N) <u>Y</u>
	If not, in	dicate which well(s) were dry	
10.1.9	Were war	ter level elevations measured during the site	(Y/N) <u>N</u>
	If yes, in	dicate well number and water level elevation_	
	If not, ex	splain no samples were taken duci	
	-site	visit	

•

-

(